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Recent advances in computer vision have allowed broad applications in every area of life, and agriculture is not left out. For the
agri-food industry, the use of advanced technology is essential. Owing to deep learning’s capability to learn robust features from
images, it has witnessed enormous application in several fields. Fruit detection and classification remains challenging due to the
form, color, and texture of different fruit species. While studying the impact of computer vision on fruit detection and clas-
sification, we pointed out that till 2018 many conventional machine learning methods were utilized while a fewmethods exploited
the application of deep learning methods for fruit detection and classification. ,is has prompted us to pursue an extensive study
on surveying and implementing deep learning models for fruit detection and classification. In this article, we intensively discussed
the datasets used by many scholars, the practical descriptors, the model’s implementation, and the challenges of using deep
learning to detect and categorize fruits. Lastly, we summarized the results of different deep learning methods applied in previous
studies for the purpose of fruit detection and classification. ,is review covers the study of recently published articles that utilized
deep learning models for fruit identification and classification. Additionally, we also implemented from scratch a deep learning
model for fruit classification using the popular dataset “Fruit 360” to make it easier for beginner researchers in the field of
agriculture to understand the role of deep learning in the agriculture domain.

1. Introduction

tImage classification is a very active research direction in
many areas and plays a very important role. Image recog-
nition serves various uses including video analysis, face
recognition, image classification, etc. Deep learning (DL) is a
subdomain of machine learning (ML) that has shown ex-
cellent results in image identification [1]. DL utilizes the
multi-layer structure to process image characteristics which

significantly increase image recognition efficiency [2]. In
other words, the application of image recognition and DL is
becoming a concept within the field of logistics and supply
chain. For instance, image recognition can better facilitate
logistics and transportation and solve the errors in many
fully automated transport vehicles due to large-scale track
identification errors [3]. Another application of DL is the
classification of fruits. DL can effectively extract image
characteristics and then introduce classification.
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Current computer vision (CV) developments have
shown outstanding results in many areas of life. Fruit de-
tection and classification has demonstrated to be a complex
and a challenging task. For some economic sectors, both for
wholesale and retail markets, research in fruit processing is
very important including the processing industry. ,ese
factors have motivated researchers who developed various
methods to process fruits automatically, either to identify
them or to estimate their quality efficiently. Over the past few
years, agricultural industries such as food processing,
marketing, packaging, and fruit classification have become
more focused research direction. Processing and sorting of
unique crop plants such as orange, cherry, apple, mango,
and citrus are labor and time intensive due to a number of
varieties of same fruit, for instance, more than 7,000 apple
varieties are produced worldwide (http://usapple.org). Au-
tomation can thus minimize labor costs and quickly increase
productivity. In early research, scientists suggested different
methods from CV in order to manually extract features from
fruit and ML for classifying the CV features. ,rough CV
algorithms, color, form, size, and texture characteristics of
fruit are used for classification algorithms [4–6]. Most of
them utilized preprocessing or feature extraction through
CV in conjunction with different classifiers. However, most
evolved classifiers are not robust for all fruit types which
results in higher misclassification rates. For quality evalu-
ation and robotic harvesting, fruit detection and classifi-
cation has seen some implementation of DL methods, but
these methods are having limited classes and small datasets.
Literature analyses of new methods to classify fruits were
published in 2017 by Liu et al. [7]. ,ey conducted a search
on the recent published work in the area of fruit detection
and classification. ,ey selected, among others, eleven
publications that were significant. Among the selected
publications, just 4 works discuss DL or other conventional
ML methods [8–11]. ,is demonstrates that while con-
volutional neural networks (CNNs) were of great interest at
that time, still many studies on fruit detection and classi-
fication did not utilize CNNs. ,ey also suggested that DL
models should be more commonly used, especially CNNs,
because they have shown state-of-the-art performance on
image classification in biomedical and health informatics.

In the area of object detection and image recognition,
CNN has become a highly important model for study.
CNN’s ability to extract attributes automatically from an
input image made it more robust to use. In CNN, the image
can be fed into the network directly in contrast to con-
ventional CV-based feature extraction algorithms, and thus
it eliminates preprocessing and extraction processes. Con-
volutional layers (CLs), pooling layers (PLs), and fully
connected (FC) layers are the three layers that make a classic
CNN. After winning the ImageNet award, CNN gained
much attention [12]. ,e various CNNmodels developed by
many scholars by varying width and depth of layers were
then discussed in [13–15]. Detection and classification of
fruits is a relatively complex problem due to the great variety
of intraclass forms, colors, and textures. ,ese limitations
have led to a shortage of automated fruit classification
systems for multiple classes. A more complex information

system of fruit automated detection and classification may
be useful in picking right fruit with the correct nutrition. It
can support children and people with visual impairments
and develop self-checking supermarkets. We identify fruit
classification tasks as class determination by their particular
type in order to define the study areas of our review. Fruit
detection, on the other hand, is geared towards automatic
harvesting. Based on DL’s high level of attention over recent
years and contrary to current surveys, we present a thorough
review of the use of DL in the processing of fruit images,
particularly in areas of classification and detection. ,is
paper offers a comparative survey of existing fruit detection
and classification approaches.,e contributions of the study
are as follows:

(i) Due to the novelty of DL application in the studied
area, to the best of our knowledge, we present the
first thoroughly investigative study on the appli-
cation of DL in the field of detection and classifi-
cation of fruits from 2017 to date.

(ii) We define and discuss the architectures used in
recent research and the publicly accessible datasets
for fruit detection and classification.

(iii) Two main areas in the agri-food industry related to
the classification of fruits and fruit detection were
deeply investigated. We summarized the major
aspects, properties, and results of the work carried
out by numerous researchers.

(iv) Aiming to give a better understanding of how DL
(CNN) models are implemented, we present a
theoretical background on CNNs. Additionally, for
more elaboration of the topic, we also conducted an
experiment on fruit classification using the popular
dataset, namely, Fruit 360.

(v) To further illustrate deployment of transfer learning
for the purpose of fruit detection and classification,
we deployed the ResNet-50 architecture via transfer
learning and compared it with the CNN model
developed and trained from scratch. We utilized the
newly introduced one-policy learning rate.

(vi) Lastly, the application of DL recently has progressed
sharply and witnessed improvement in the area of
object detection and classification. We also explored
the newly proposed concept and thus also deployed
an adversarial attack mechanism to the trained
model in order to illustrate the need for application
of attention mechanism and adversarial defense
mechanism in the detection and classification of
fruit models.

,is paper is organized as follows. Section 2 talks about
the background of the study, i.e., it summarizes the role of
CV methods applied in the domain of fruit detection and
classification. Section 3 introduces an overview of the DL,
i.e., CNN model and the prerequisite to implementing a
CNN model. Section 4 talks about fruit detection and
classification as well as various DL models applied in the
field. We discuss about the utilized datasets by different
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authors in Section 5. In Section 6, we discuss evaluation
metrics while Section 7 illustrates our experimental
analysis on fruit classification based on a DL model using
the popular Fruit 360 dataset. We further illustrate the use
of transfer learning in the fruit detection and classification
field and compare the result with the CNN models trained
and developed from scratch. Section 8 highlights the
future needs in the design of fruit detection and classi-
fication algorithms, and finally, we conclude our study in
Section 9.

2. Background

DL is described as research direction in ML for the creation
of complexmodels that solve complex tasks. DLmodels have
been developed using supervised learning techniques and
based on artificial neural networks. ,e fact that these
models are proven capable of understanding the problem
that needs to be resolved in the hierarchy of concepts is an
essential component of DL [16]. CV is one of the areas in
which DL achieved state-of-the-art performance. More
precisely, on problems like optical character recognition
[17], object detection [18], semantic segmentation [19], and
image classification [20], DL models were found to achieve
the best results. ,us, presently, most of the practical so-
lutions for these concerns are DL based.

In current history, a number of papers have shown
tremendous progress in modelling frameworks with DL for
image recognition. With the CNN, the authors in [13] used
DL for the identification of fruit objects and achieved an
outstanding degree of both learning and recognition. In [21],
the studies evaluated two CNN architectures, namely,
MobileNet and Inception, as the classifiers of ten classes of
fruit. ,ey claimed that MobileNet was propagating images
with about the same accuracy significantly faster [22].
However, clementines and kiwifruits were difficult to predict
which may be due to the option of training and testing a
number of images taken with a video camera mounted to the
conceptual retail market systems and simultaneously ob-
tained from ImageNet. Abdul Hamid et al. [23] introduced a
comparative analysis between the bag of features (BoF),
AlexNet, and a CNN for fruit recognition. ,e results
showed that all three methods were very reliable, but the
most rapidly available prediction for recognition was the
CNN technique. In turn, two deep neural networks, with
excellent results in the precise fruit classification of both
bases, were proposed and tested in [24] utilizing simple and
more complex datasets. A number of computational ex-
periments have been presented in [25] to train various CNN
architectures to detect fruit. For a similar reason in [14], a
13-layer CNN was proposed.

,ere is significant evidence of attempts to develop an
automated fruit detection and classification system. Fruit

identification faces a variety of challenges due to its irregular
form, size, and varying color. A lot of research has been
undertaken to define strategies for coping with these
problems. Virtually every physical component of fruits is
known to be feasibly classifiable. ML methods have been
investigated and continuously developed for this role, both
by the empirical network and neural network (NN)
[9, 13, 14]. In this respect, most attempts are made to
combine image analysis as feature details with ML frame-
work for classification/recognition [26–29]. ,ese efforts
identify and represent a physical feature in a vision-based
machine representation called the description of features or
feature description. ,ese characteristics are then given to
converge on a qualitative result as the input to the classi-
fication algorithm. Numerous techniques for the description
and classification of features have been studied, but sub-
stantial overhaul and enhancement are required to achieve
an efficient classification. A thorough reconsideration for all
associated questions of features, sensors, and classification
algorithms is important for an effective system of detection
and classification for fruit.

3. Overview of the Convolutional Neural
Network (CNN)

,e key DL architectures for image classification are the
convolutional neural networks (CNNs) [30–35]. We note
that the use of CNN for recognition of fruit has increased
dramatically over the last three years (2018 to 2021) and has
generated excellent results through either new models or
pretrained transfer-learning networks. CNNs are kinds of
artificial neural networks that operate in at least one of their
layers with convolution [36]. CNNs have been seen as a
competitive tool for image classification in several fields
since 2012, when Krizhevsky et al. [12] won the ImageNet
Competition (ILSVRC) [37]. As an effective tool for image
classification in many areas, CNNs have gained great
popularity. Particularly, in agriculture, fruit classification
[14, 38, 39] and fruit detection [40, 41] applied CNN-based
approaches. Evolution of CNN is traced back to multi-layer
neural network that was first proposed by LeCun et al. [42]
in 1998. Multi-layer perceptron is a regularized version of
CNN. ,e multi-layer perceptron typically means that all
networks are completely connected, i.e., each neuron in one
layer is linked to the next layer. Unlike CNNs, convolution
operations are used at least in one of their layers [13].
Figure 1 shows the schematic diagram of basic CNN ar-
chitecture, whereas mathematically, we can define the
structure of the convolution neural network operation from
layer to layer as

x
1⟶ w

1
􏼐 􏼑⟶ x

2⟶ . . .⟶ x
L− 1⟶ w

L− 1
􏼐 􏼑⟶ x

L⟶ w
L

􏼐 􏼑⟶ z, (1)
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where x1 denotes the input, usually an image of order 3
tensor nH, nW, nC (image height, image width, and channel
(usually RGB)). It goes into the first layer which is denoted as
(w1) where w1 represents the parameters involved in the
preprocessing is. x2 denotes the output of the first layer after
convolution and acts as an input to the subsequent layer.
When converting the input image, we make use of the filters
f, and it must be the same size with the channel size of the

image, and thus the dimension of the filter is represented as
di m(filter) � (f, f, nc). Mathematically, for a given im-
age denoted as I and filter denoted as K, we have

conv(I, K)x,y � 􏽘

nH

i�1
􏽘

nw

j�1
􏽘

nc

k�1
Ki,j,kIx+i−1,y+j−1,k. (2)

After convolution, (2) becomes

dimdim (conv(I, K)) �
nH + 2p − f

s
+ 1􏼤 􏼥,

nW + 2p − f

s
+ 1􏼤 􏼥􏼠 􏼡; s< 0

� nH + 2p − f, nw + 2p − f( 􏼁; s � 0,

(3)

where |x| denotes x floor function and p and s denote
padding and stride, respectively. Convolution is followed by

pooling which can either be average pooling or max pooling.
When pooling is done to the convolution layer, (3) becomes

dimdim (pooling(image)) �
nH + 2p − f

s
+ 1􏼤 􏼥,

nW + 2p − f

s
+ 1􏼤 􏼥, nC􏼠 􏼡; s> 0

� nH + 2p − f, nw + 2p − f, nc( 􏼁; s � 0.

(4)

A fully connected layer takes in a vector a[i− 1] and
returns a vector a[i]. Let us consider the jth one in an ith

layer, and the full connected layer can be denoted mathe-
matically as

Start

Model Training
CNN

Dropout
Layer

Fully Connected
Layer (Flatten)

Stop
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Model Testing
CNN

So�Max Classifier
Maxpool

Layer

Convolutional
Layer
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Figure 1: Schematic diagram of basic CNN architecture for fruit detection and classification.
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z
[i]
j � 􏽘

ni−1

l�1
w

[i]
j,l a

[i−1]
l + b

[i]
j ⟶ a

[i]
j � φ[i]

z
[i]
j􏼐 􏼑, (5)

where b
[i]
j denotes bias and φ[i] denotes the activation

function. ,e input to the fully connected layer might be the
output of a convolution or pooling layer with the dimension
n

[i−1]
H , n

[i−1]
W , n

[i−1]
C , and thus there is need for flattening into a

1D vector n
[i−1]
H ∗ n

[i−1]
W ∗ n

[i−1]
C :

ni−1 � n
[i−1]
H , n

[i−1]
W , n

[i−1]
C . (6)

In (1), suppose we are tackling a classification task having
C classes. ,e general procedure is to output xL as a C D
vector in which the posterior probability x1 is obtained from
ith class. Transform xL− 1 into (L − 1)th using SoftMax sets
xL as the probability mass function. For the loss calculation,
suppose the ground truth image is denoted as t and is the
corresponding value for the input x1, and we calculate the
difference between the predicted value xL and the target t

which can be represented mathematically as

z �
1
2

t − x
L

����
����
2
. (7)

,e CNN architecture contains several phases com-
prising the parts below.

3.1. Convolution Layer. ,e key construction block used in
CNN is the convolutional layer (ConV layer). It comprises a
series of filters K, which is learned (i.e., kernels) and which
are almost always square and each filter has a width and a
height. ,ese filters are tiny (in spatial dimensions) but
extend to the maximum depth of the volume [43].

3.2. Activation Function (AF). An activation layer accepts
the input volume and applies the AF given [44]. Since an
element-specific activation function is applied, the activation
layer output is always the same as the input dimension. We
use a non-linear activation layer after each ConV layer in a
CNN. We have numerous activation functions such as the
sigmoid function, tanh function (hyperbolic tangent), ReLU
(rectified linear unit function), ELU, or any other Leaky
ReLU variants. ,e sigmoid activation function is defined as

1
1 + e

− x. (8)

It is a non-linear function that outputs multiple neurons
when passed through a sigmoid function as the activation
function becomes non-linear. It ranges from 0 to 1 with a
shape. ,e tanh activation function is a mathematically
twisted version of the sigmoid function and performs better
than the sigmoid function. ,e value ranges from −1 to +1,
and it is mathematically defined as

e
x

− e
− x

e
x

− e
−x or 2∗ sigmoi d(2x) − 1. (9)

,e ReLU (rectified linear unit function) is currently the
most widely used activation layer which outputs x if x is

positive and otherwise zero. It is mathematically illustrated
as

A(x) � x if x ≥ 0, otherwise 0. (10)

,e ReLU activation function is computational costly
compared to sigmoid and tanh activation function. ,e
improved version of the ReLU activation function is the
Leaky ReLU function which, instead of defining the ReLU
function 0 for x less than 0, defines a smaller linear com-
ponent. Mathematically, we define the Leaky ReLU acti-
vation function as

f(x) � x if x ≥ 0 otherwise αx. (11)

3.3. Pooling or Subsampling Layer. It decreases the number
and spatial size of convolutional outputs by cutting back on
network parameters. It helps us control overfitting. Sub-
sampling layers operate individually for all input depths
utilizing either the max pooling usually carried out in the
center of the CNN-architectural structure to minimize the
size of the input or the average pooling usually used as the
last network layer in the process (such as ResNet, GoogleNet,
and Squeeze Net) where FC layers are to be avoided.

3.4. Fully Connected Layers (FC Layers). FC layers are often
placed at the end of the network. FC layers make use of the
outcomes of the process of convolution and pooling for the
classification of image into a class (i.e., label). In FC layers,
neurons are completely connected to the previous layer, i.e.,
the activation layer as default for feedforward neural net-
works. Typically, the SoftMax function is used for a multi-
class classification task, where each probability values falls
between [0, 1] and their overall amount equal to 1. Finally,
each neuron determines one specific label value.

3.5. Dropout. Dropout is basically a type of regularization
which aims to prevent overfitting, perhaps at the detriment
of training accuracy, by increasing test accuracy [45, 46].,e
purpose we use dropout is because we wish to minimize
overfitting by altering the network architecture directly
during training. Random dropouts make sure that no single
node in the network “activates” when presented with a
specific pattern. (12) denotes the mathematical representa-
tion of a dropout:t

E
zED

zwi

􏼢 􏼣 �
zEN

zwi

+ wipi(1 − pi)I
2
i , (12)

where z denotes the dropout rate
(z � 1with probability p an d 0 otherwise).

3.6.Hyperparameters. Hyperparameters are parameters that
are very crucial in deploying a neural network. ,ey are
specific values used in controlling the learning process of the
network. Every task is of different category, and the ap-
proach of solving it differs; thus, hyperparameters help us to
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refine our model to attend to the specific task at hand.
Tuning hyperparameters of deep neural network is a very
difficult task as it slows to train because of different pa-
rameters to configure [47]. We will briefly describe the
common and widely employed hyperparameters by re-
searchers in training a neural network.

3.6.1. Learning Rate. It is the pace at which the weights of
the neural network change between iterations. Large swings
in the weights may result from a high learning rate, and we
may never reach their ideal values. A low learning rate is
desirable, but it will take more iterations for the model to
converge. Currently, the use of adaptive learning rate or
momentum-based method helps researchers to start with a
fixed learning rate, gradually decreasing the learning rate to
optima. Using momentum, we calculate the learning rate in
terms of decay rate:

nn+1 �
ηn

1 + dn

, (13)

where η denotes learning rate, d denotes decay parameters,
and n denotes the iteration step. Calculating the learning rate
in terms of schedule, we calculate the decay application:

ηn � n0d
[1+n/r]

, (14)

where ηn denotes learning rate at n iteration, n0 denotes the
initial learning rate, and d denotes the rate at which it drops
(d� 0.5 means that 50% of dropout) while r denotes how
often the dropout is applied (10 indicates that at every 10
epochs, the learning rate should drop). Exponential learning
scheduler is calculated as

ηn � n0e
− dn

, (15)

where d denotes the decay parameter. Using the adaptive
learning rate, one can choose from the different adaptive
gradient descent algorithms such as Adam, AdaDelta,
AdaGrad, and RMSprop which are embedded into the deep
learning libraries (Keras and PyTorch).

3.6.2. Number of Epochs. ,is indicates the number of times
the whole training set is passed into the model. When
training from scratch, it is advised to train for a long epoch to
allow the network to learn very well, while during training,
using a pretrained model, we use small epoch since the
model is a pretrained model meaning that it is initially with a
larger dataset.

3.6.3. Batch Size. Batch size basically explains the number of
subsamples to be fed into the model after which an update
on the parameter happens.

3.6.4. Momentum. ,is is usually to help us know the di-
rection of the next iteration with the knowledge of the
previous iteration. Basically, we use values between the range
of 0.5 and 0.9, and it is to avoid oscillation.

3.7. Prerequisite to Implementing a CNN Model. Before
implementing a convolution neural network, the following
steps are mandatory.

3.7.1. Defining Your Work Objective. It is very mandatory to
know the objective of the work before deciding if CNN will
be the best model for the work or not.

3.7.2. Defining the CNN Architecture. Having known your
objective, defining the architecture to use is the next step.
,is involves the description of the number of layers, as well
as the size and number of filters for each layer.

3.7.3. Loss Function. ,is indicates the difference between
the specified ground truth labels and the network outputs.
,e mean squared error function is usually used. ,erefore,
losses must be reduced in order to find and optimize the
participation of every weight. Currently, researchers widely
make use of Adam in place of the gradient descent algorithm
as a part derivative of the loss function for the reduction
procedure.

3.7.4. Training Dataset. ,e available data are generally
divided into three subsets: a training set to train the network,
the validation set to evaluate the model during the training
process, and the testing set to evaluate the final trained
model. Many CNN frameworks require all training details to
be in the same form (i.e., dimensions). Preprocessing data is
therefore the first step in normalizing the data before the
training process.

4. Fruit Detection and Classification

Description of recognition (detection and classification)
could also be interpreted in various ways:

(i) ,e identification of a fruit (differentiating a fruit
and an object, e.g., a leaf and a background).

(ii) Classification of the fruit species (e.g., orange and
tangelo).

(iii) Recognition of a number of species of fruit (e.g.,
Crimson Snow Apple from Granny Smith Apple).

,e right approach of finding the right species and the
right selection of fruits is to recognize the nature of the
problem presented in this article. Classification of fruit, due
to the enormous numbers of varieties [48], is a relatively
complex problem. In species and varieties, significant var-
iations in appearance occur including irregular forms,
colors, and textures. In addition, images narrowly cover the
camera’s lightning landscape, distance, and angle which all
contribute to blurred images. ,e part or entire occlusion of
the object is another concern. ,is weakness led to the
absence in real-life implementations of multi-class auto-
mated fruit classification systems [48]. Several investigations
are conducted to identify and classify fruits with various
objectives and applications. Figure 2 illustrates the imple-
mentation steps of object detection and classification which
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is the same procedure for fruit detection and classification.
In this survey, we analyzed in depth the various deep
learning models applied to identification and classification
of fruits.

4.1. Preprocessing and Segmentation. Preprocessing and
segmentation is a vital step in the field of classification and
detection. Since fruits vary in shape, size, color, and texture,
preprocessing is the first and most important thing to do in
the task of fruit detection and classification. During the
preprocessing stage, images taken are preprocessed to
remove the background noise, thereby extracting the fruit
image, as shown in Figure 3. After that, most researchers
convert the image into a grey image from RGB before
converting to binary image. Since the introduction of DL,
feature extraction has been the widely used preprocessing
step after dataset acquisition. Techniques such as FCH, MI,
and so on are used to extract the fruit features (shape, color,
and size) before converting them into vector features.

If you want to find foreground items in images with
stationary backgrounds, you can use image segmentation.
Objects of interest in a scene are often segmented using
techniques such as background subtraction. It’ is possible to
think about background subtraction as a way for separating
two objects in an image. Segmentation techniques are based
on Otsu, lesions, ROILS, or edges to differentiate the ROIs
from the background [49–52]. After that, a fusion process is
carried out to integrate the feature vectors to a final vector.
Since segmentation is a must for object detection, we can
divide the used architecture into two, namely, the fully
convolutional networks and the Mask R-CNN [53, 54]. ,e
fully convolutional neural network can be seen in the work
where conventional FCN was employed, where U-Net was
employed, and where SigNet was used [55–58]. Mask
R-CNN was used in [54, 59, 60]. ,is is a region-based type
of segmentation and the most widely used. First, the ROI
(region of interest) is extracted from the fruit dataset, fol-
lowed by the removal of the segmented image background.
,e classification of detection network is then applied to the
segmentation image to achieve the detection task. Since we
are not much concerned about the segmentation aspect, we
summarize the preprocessing and segmentation process of
fruit detection and classification diagrammatically.

4.2. Deep Learning Models Applied to Fruit Detection. In
several real-life applications, fruit identification systems
were implemented in store checkout, where the device might

very well use scanner tags instead of manual ones. Fur-
thermore, it can be used as aids for the blind. ,e identi-
fication of different fruit species is a repeated activity in
supermarkets, where the cashier must identify each type of
product that defines its cost. ,e right solution to this
problem is to provide a system of fruit identification that
automates price labelling and measurement. While several
researchers addressed the fruit detection question, as seen in
[61–64], the problem of developing a fast and reliable fruit
detection system still persists as recorded in [65]. ,is is
because the look of fruits in field settings, including color,
type, scale, texture, and reflection properties, is highly
variable. Deep neural networks have recently made im-
portant advances in the classification and identification of
objects. ,ere are two steps in the state-of-the-art PASCAL-
VOC detection system [66]. ,e first phase of the pipeline
implements the regional proposed method for extracting
areas of interest from an image, such as selective search and
edge box, and then feeds them to a deeper neural classifi-
cation network [67]. Despite the pipeline’s excellent re-
cording achievement, real-time implementation cannot be
realized as a result of the pipeline’s high computational cost.
,is problem is overcome by integrating a deep convolu-
tional network for classification with the object proposal
network, generally called region proposal network (RPN)
[68–70], so that the system can simultaneously predict and
classify object boundaries at each location.,e parameters of
the two networks are shared, which result in much higher
ratings and are thus optimized for robotic purposes. We will
discuss in detail the different DL models applied in solving
fruit detection problems as summarized in Table 1.

4.2.1. Faster Region-Based Convolutional Neural Network
(Faster RB+CNN). ,ismodel was adopted by Sa et al. [71].
,e purpose was to establish a neural network which would
be used to harvest fruits from autonomous robots. ,e
network model employs transfer learning using ImageNet
and two input image types: RGB and NIR (near infrared).
,ere were two ways to merge the RGB and NIR input
images: early fusion and late fusion. To begin with, 3 RGB
channels and 1 NIR channel are needed for the early fusion.
Late fusion utilized 2 explicitly trained models, which are
paired with predictions from both models and results
summed. Chen et al. [40] likewise employed a faster region-
based convolutional neural network for fruit detection in
orchards and compared the performance against other ar-
chitectures (VGG and ZFNet). ,ere are five convolutional

Input Object
Recognition

Image
Classification

Object
Detection

Object
Localization

Figure 2: Basic implementation steps of object detection and classification.
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layers in the ZF network and 13 deeper layers in the VGG-16
network. ,ere is a set of convolutional layers from which a
3-channel input image is propagated, from the region of
interest. Each box is spread across fully connected layers that
offer back its class likelihood and retract a finer boundary
box around each object.,e ground truth of the input image
is used during training in the RPN and the R-CNN layers. A
class specific detection level is added to the performance
during testing and a non-maximum detection threshold is
applied to avoid overlap.

4.2.2. Modified Inception-ResNet (MI-ResNet). ,is model is
based on deep simulated learning. Rahnemoonfar and
Sheppard [72] used this model in counting of fruits. ,e
objective was to create a simulated deep CNN for yield
estimation. ,e model was employed to solve various
problems facing CV algorithms for counting fruit for esti-
mating production, such as the varying degree of fruit
overlap, lighting and foliage occlusion, shadow fruit and the

variance in size, and so on.,e overhead for object detection
and localization is minimized by this model. ,e models
utilize synthetic data for training and are evaluated on real
data and consist of, in addition to the updated Inception
ResNet-A, several convolution and pooling layers. Con-
catenation was done to the divided three parallel layers of the
updated Module Inception-ResNet-A. Following the mod-
ified Inception-ResNet-A layer, a reduction modified in-
ception module was employed to minimize the image size
simultaneously and increase the number of filters. Another
set of Inception-ResNet-A layer follows immediately ac-
companied by 3× 3 average pooling before the final fully
connected layer was added.

4.2.3. VGG-16. VGG-16 which is a 13-layer convolution
model was compared by Bargoti and Underwood [41]
against a faster region-based convolutional neural network
for deep fruit detection in orchards. ,e performance from
the convolution layers is a map with high dimensions,

Table 1: Summary of the deep learning models applied to fruit detection.

Ref/year DL model Dataset Dataset partition Accuracy
[71] 2016 Faster R-CNN TL+ Field Farm 82% Train, 18% Test 0.83 F1-s
[41] 2017 Faster R-CNN Orchard 2268 Train, 482 Test >0.9 F1-s
[72] 2017 IN-ResNet Personalized 24000 Train, 2400 Test 91% - 93
[41] 2017 VGG-16 Orchard 2268 Train, 482 Test 95%
[73] 2018 CNN Kiwifruit 70% Train, 30% Test 89.29%
[74] 2019 YOLO V3 PT+WGISD — —
[75] 2019 DAN Fruit 360 70% Train, 30% Test 91%
[76] 2019 Faster R-CNN+ Iv2 Cherries 60% Train, 20% Val, 20% Test 85%
[77] 2019 E-Net Fruit 360 80% Train, 20% Test 93.7%
[78] 2019 SS-CNN Apple/Pears Orchard — +90%
[79] 2019 M-YOLO PT+Mango Orchard 1300 Train, 130 Validation, 300 Test 0.97 F1-s
[80] 2019 M-Net Mango Orchard 1300 Train, 130 Validation, 300 Test 73.6%
[81] 2019 M-RCNN+RetinaNet + FPN Strawberry Dataset 2000 Train, 100 Test 95.78%
[82] 2019 Faster R-CNN+VGG-16 Kiwifruits 70% Train, 30% Test -
[82] 2019 MMF MKV2 Kiwifruits 70% Train, 30% Test ±90%
[83] 2019 MVGG-16 Guava 80% Train, 20% Test 98.3%
[84] 2019 MVGG-16 Date Fruit 80% Train, 20% Test 98.59%
[83] 2019 MGNet Guava 80% Train, 20% Test 94.8%
[84] 2019 AlexNet Date Fruit 80% Train, 20% Test 99.01%, 97.01%
[85] 2019 ResNet Strawberry 80% Train, 20% Test 94%
[86] 2019 MR-CNN+RNet-101 Orange 60% Train, 20% Validation, 20% Test 97.53%
[87] 2020 YOLO V3 PT+WGISD Pretrained + 300 Train, 60 Test 97.3%
[88] 2020 YOLO V2 Mango +WGISD 300 Train, 60 Test 96.1%
[87] 2020 YOLO V2 Mango +WGISD 300 Train, 60 Test 95.6%
[89] 2020 YOLO V4 Banana Orchard 835 Train, 209 Validation, 120 Test 99.29%
[90] 2020 IM-R-CNN Apple 368 Train, 120 Test 97.31%PR
[88] 2020 M-YOLOV3 Mango Orchard 1300 Train, 130 Validation, 300 Test 94% F1-s
[91] 2020 YOLO V4+U-Net Litchi Fruits — 100%
[17] 2020 RetinaNet-FPN V4 Strawberry 80% Train, 20% Test —
TL� transfer learning, F1-s: F1-score, PR: precision rate, PT: pretrained, WGISD: Wine Grape Instance Segmentation Dataset, and MKV2: Microsoft Kinect
V2.
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Figure 3: Preprocessing and segmentation steps for fruit detection and classification.

8 Mathematical Problems in Engineering



sampled by 16 due to the steps of the layers in the pooling. In
the local function map areas, a layer of box regression and a
box classification layer are distributed to two entirely related
siblings.

4.2.4. You Only Look Once (YOLO V3). ,is model has been
used by Katarzyna and Pawel [74] to classify fruit variety into
uncertainty retail conditions. To detect the fruit of the entire
image, a vision-based deep CNN was utilized, and then a
CNN approach was used for classifying the fruit of images
with a single entity (apple). In order to create apple region of
interests (RoIs) from the original images, the YOLO archi-
tecture V3 was used [92–94]. ,e key difference between this
architecture and the previous version is that it allows de-
tection on three different scales and is thus ideal for smaller
objects. Object characteristics like the pyramid network are
derived from these scales. In the first step, YOLO divides the
image input into a grid of S× S, where S is the magnitude.
Only one entity with boundary boxes is expected for each
cell. ,e network uses logistic regression to predict an ob-
jectless score for each border box. ,e score criteria weeded
out bad predictions. ,e end result is a box whose top and
lower right corners can be explained. Shi et al. [95] also used
the YOLO V3 network in an attribution-based pruning
method for real-time mango detection. ,e YOLOV3 was
pruned to fit into their work. On the other hand, Liang et al.
[91] employed the YOLO V3 network as a visual identifi-
cation technique for litchi fruits and fruiting stems that ripen
at night. In this study, litchi fruits are identified in the night
time on the basis of YOLO V3, and in accordance with the
bounding boxes, the region of interest (RoI) was determined
in the fruiting trunks. Finally, the fruit stalk is segmented one
after another on the basis of U-Net for detecting litchi fruit
and fruit stalks at night. Deep neural networks and three-
dimensional association were utilized by Santos et al. [87] to
identify, segment, and track grapes using YOLO V3. It was
determined whether or not the YOLO V3 could correctly
identify fruits from segments of the Embrapa WGISD.

4.2.5. Deep Alex Networks (DANs). ,ismodel was proposed
by Divya Shree et al. [75] for detection of fruits from images
and display of its nutritional value. AlexNet is, as we know, is
a CNN image recognition network. ,e job is to identify the
given entry in one of the classes. ,e network of Alex has 8
layers. We have the convolutional layers as the first five layers
and the fully connected layers at the last three layers including
activation layer (ReLU) and maximum pooling layers. ,ese
input images are presumed to be of 227 dimensions to 3 with
a filter number of 96 of dimensions 11× 11× 3 with 4 as the
stride length. Convolutional layer extracts the functionality,
and fully connected layers are natural neural networks.

4.2.6. Faster R-CNN Meta-Architecture + Inception V2
(Faster R-CNN+ IV2). Villacrés and Auat Cheein [76] went
ahead to employ Faster R-CNN in a more unique and
modified way for the purpose of cherry detection and
characterization. ,e use of Faster R-CNN architecture was

adopted including InceptionV2 as the feature extractor to
detect the cherries that are found within the bounding box
[96]. In the preprocessing stage, the input images were
subdivided after which the convolutional feature map was
generated by the feature extractor which was used in two
modules. ,e first module also known as the regional
proposal network (RPN) uses a sliding convolutional net-
work over the feature map locating at each point an anchor
box. After that, identical fully connected layers were used to
determine the proposed regions, i.e., the bounding box
coordinates and the probability of it belonging to either a
class or background of the input. ,e second modules
utilized the proposed region by cropping the feature map as
well as generating the RoI. After that, the generated RoI is
passed through a pooling layer to a fully connected layer for
the estimation of the probability and restructuring the co-
ordinates of the bounding boxes.

4.2.7. You Only Look Once (YOLO V2). YOLO V2 was used
by Xiong et al. [88] for the visual detection of greenmangos in
orchards with the aid of an unmanned aerial vehicle (UAV).
,e YOLO V2 consists of 19 convolutional layers and five
maximum pooling layers and achieves greater detection ac-
curacy while preserving the detection pace of the YOLO. We
can additionally see the use of YOLOV2 in the work of Santos
et al. [87] for fruit recognition system. It was used to identify,
segment, and track grapes, among other things. For the as-
sessment of fruit identification, they used the Embrapa Wine
Grape Instance Segmentation Dataset (WGISD).

4.2.8. EfficientNet (E-Net). We noticed the use of the Effi-
cientNet model in the work of ,i Phuong Chung and Van
Tai [77] for fruit recognition system. It makes use of pre-
trained convolution neural networks for performing image
related functions in structure of a base network. EfficientNet
originally performs a grid search for the base search in order
to decide the relationships between the unique scaling di-
mensions of the network while looking at each model di-
mension and availability of computational resources.

4.2.9. You Look Only Once (YOLO V4). Fu et al. [89] utilized
the YOLO V4 model to quickly and accurately recognize
banana fruits in large backdrop orchards. ,e CSPDar-
knet53 modules were utilized as the backbone of the model.
It consists of five CSP (cross, stage, and partial) connections
with eleven convolutional layers with batch normization and
Mish as activation function (11 CBM). In simple terms, the
CBM is a normal convolution that employs batch nor-
malization and the use of activation function of Mish. It is
worthy to note that CBM module and CBL models are same
except that both use a different activation function. ,e
CBM uses the Mish, whereas CBL uses the Leaky ReLU
activation function.

4.2.10. Single-Shot CNN (SS-CNN). A single-shot CNN was
employed by Bresilla et al. [78] for a real-time fruit detection
within a tree. A modification of the YOLO V2 model was

Mathematical Problems in Engineering 9



employed here. ,e modification was seen at the grid search
method. ,ey changed the standard model input grid by
removing some layers of the model and came up with a new
model that utilized only 11 layers, dual grid size, and ad-
ditional two new blocks.

4.2.11. Improved Mask R-CNN (IM-R-CNN). For the task of
detection and segmentation of overlapped fruits with apple
harvesting robot, Jia et al. [90] introduced the use of opti-
mized Mask R-CNN. ,ey replaced the original backbone
network structure of the Mask R-CNN with a combination
of the ResNet and DenseNet network structure for the
feature extraction. Reason for the replacement was to in-
crease feature reusability and transitivity by the usage of less
parameters, and they still obtained an excellent perfor-
mance. ,e resulting feature map generated by this back-
bone network was fed into the RPN as input to generate the
region proposal with the idea that the input is for each
feature map accordingly. Lastly, the full convolution net-
work generates the mask which shows the region where the
apple is found. Mask R-CNN was also employed by Santos
et al. [87] for grape detection, segmentation, and tracking
using the Embrapa Wine Grape Instance Segmentation
Dataset (WGISD). Yu et al. [81] also modified the Mask
R-CNN for the task of fruit detection for strawberry har-
vesting robot in non-structural environment. ,e feature
extractor was built on top of the ResNet-50 backbone ar-
chitecture and the feature pyramid network (FPN). Sequel to
the modelling of the region proposal for each feature map,
they trained the region proposal network end to end after
which the generation of the ripe fruit mask images was done,
and a visual localization method was carried out for the
strawberry picking points.

4.2.12. Mango YOLO (M-YOLO). A mango-based model
was proposed by Jia et al. [90] for a task of real-time fruit
detection and orchard fruit load estimation. ,is is the
integration of the YOLO V3 and YOLO V2 (tiny) networks
which form the benchmarking of “Mango Yolo.” ,e ar-
chitecture offered an acceptable processing speed for real-
time operations with just 33 Mango Yolo layers compared to
107 YOLO V3 layers.

4.2.13. Mango Net (M-Net). Based on semantic segmenta-
tion, Kestur et al. [80] developed this CNN model for the
task of mango detection and counting via an open orchard.
,e activation layer (ReLU) follows all convolution opera-
tions with the exception of a penultimate convolution layer
which is followed by activation layer (sigmoid).,e output is
then sampled for the last convolution layer. In all con-
volutional layers, a 3× 3 stride of 1 filter is used and 1-pixel
padding is presented. Filter count and convolution layer
thickness are both fixed for a particular block in a multi-filter
convolution process. Each block except block 4 is subject to
maximum pooling. ,e kernel of the maximum pooling is
2× 2 with a stride of 2. In blocks 1, 2, 3, and 4, the number of
filters is 64, 128, 256, and 1, respectively. To obtain the final

pixel classification result, block 4 output is upsampled to the
size of the image input. All convolution layers are activated
by ReLU function with the exception of the penultimate
layer. A semantic segmented image is formed in the last
layer. A pixel-sensitive function map is the semantic seg-
mented image and was used for mango detection and
counting.

4.2.14. RetinaNet + Feature Pyramid Network (RetinaNet-
FPN). Kirk et al. [97] proposed this model for a rapid and
robust outdoor fruit detection system combining bio-in-
spired features with one-stage DL networks. ,e RGB data
and the CIELab data are depth-specifically packed to form a
6-dimensional tensor input to the grid, where the dimension
of input D is enhanced by a stride of 2 at the convolutional
layer. ,en, from the four blocks of the 3× 3 convolution
layer and activation layer (ReLU) twice repeated by in-
creasing the number of the input channel D comes a four-
feature map generated by the ResNet-18 feature extractor.
,e latter three maps are then used for 5 multi-scale map
generation in the pyramid network.

4.2.15. Faster R-CNN Network +VGG-16 (Faster
R-CNN+VGG-16). Liu et al. [82] employed this method in
the classification of kiwifruit detection. ,ey pretrained the
original convolutional layers of the VGG-16 network with
ImageNet dataset and fine-tuned them with the RGB and
NIR images of kiwifruit training dataset denoted accordingly
as RGB-only and NIR-only.

4.2.16. Multi-Modality Fusion (MMF). Liu et al. [82]
employed this method in the classification of kiwifruit de-
tection. To receive and fuse the aligned RGB and NIR im-
ages, two modified networks have been created. One was
VGG-16, which was simultaneously sponsored by RGB and
NIR images. ,e other included two VGG-16 pretrained
networks, each of which was assisted by RGB and NIR image
and then connected to the feature map. ,ey were, re-
spectively, referred to as image-fusion and feature-fusion
modes. ,e image-fusion mode changed the structure of the
VGG-16 network’s input layer from three to six channels
(RGB image as well as the NIR image has 3 channels). ,e
VGG-16 network was changed and adapted to simulta-
neously receive RGB and NIR data. ,e RGB and NIR
images were input individually into two VGG-16 networks
in the feature-fusion mode before being merged on the
feature map. To accomplish this, the feature maps of the
RGB and NIR images are then combined with the concat-
enation layer. ,e two VGG-16 networks were initialized
with the RGB-only and NIR-only parameters, respectively,
and fine-tuned as the original VGG-16 network.

4.2.17. CNN. ,is model was adopted for the purpose of
image recognition of multi-cluster kiwifruit in field by Fu
et al. [98]. ,e input layer is followed by three convolution
layers, namely, Conv1, Conv3, and Conv5, before a sub-
sampling layer and the finally output layer. By using a batch
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normalization (BN) process, the CNN architecture was
optimized. Added BN layers were at the 1, 3, and 5 con-
volutional layers of the initial LeNet. ,e scale of all kernels
was 5× 5; the samples of all layers were 2× 2. 6, 16, and 120
represent the Conv1, Conv3, and Conv5 feature maps, re-
spectively, with the activation function ReLU.

4.2.18. Modified VGG-16 (MVGG-16). Lin et al. [83]
employed the modification of VGG-16 architecture for the
purpose of guava detection and pose estimation. ,e
modification is seen at removal of the dense prediction map
of VGG-16 using the state-of-the-art FCN model [53]. In
simple terms, the FCN model was used to rewrite the fully
connected layers of VGG-16 into the fully convolutional
layers. Yuesheng et al. [99] employed this architecture
alongside GoogleNet. We also saw the use of VGG-16 in a
modified way for harvesting date fruits in [84]. ,e model
uses a smooth architecture that uses filter dimension of 3× 3
with a stride of 1 for the convolutional layers and a di-
mension of 2× 2 with stride of 2 in all layers. ,e 13
convolutional layers which made up the architecture with 3
fully connected layers are grouped into 5 blocks while the
maximum pooling layers are used to link the adjoining
blocks. ,e number of filters in the convolutional layer
increases by a multiplication of 2 after each maximum
pooling. ReLU is used as the activation function in all the
layers, and the fully connected layer architecture of AlexNet
was employed.

4.2.19. Modified GoogleNet (MGNet). GoogleNet modifi-
cation was seen in the work of Lin et al. [83] for the purpose
of guava detection and pose estimation alongside the
modification of VGG-16 architecture. ,ey swapped the
FCNmodel into the fully connected layers of GoogleNet into
the fully convolutional layers.

4.2.20. AlexNet (ANet). AlexNet architecture was employed
for date fruit classification by Altaheri et al. [84] for robotic
harvesting. ,e network consists of 5 convolutional layers of
which the first two convolutional layers are followed by a
local response nomination and a maximum pooling layer
while the fifth layer of convolution is followed only by a
maximum pooling layer and three fully connected layers.
,e first layer is of size 11× 11 with a stride of 4 and 96 filters,
and the second layer is of size 3× 3 with a stride of 1 and 256
kernel filters, whereas the third to fifth convolutional layers
are of size 384× 384 with kernel size 3× 3 with 256 filters.
After the first convolutional layer, the stride is set to 1 for all
other convolutional layers and a ReLU (rectified linear unit)
is set as the activation function.

4.2.21. ResNet (RNet). Ge et al. [85] utilized the ResNet
architecture for strawberry detection. Its uses the basic CNN
to extract features from the input images.,ese feature maps
pass through RPN (region proposal network) to generate the
RoI (region of interest) potential bounding boxes and then
the RoI is aligned.

4.2.22. Mask R-CNN+ResNet-101(M-RCNN+ResNet).
Mask R-CNNwhich is an extended version of Faster R-CNN
comprises two stages, namely, the region proposal network
(RPN) and the feature extraction stage. Chen et al. [40]
employed the ResNet-101 in an augmented way with the
Mask R-CNN to generate a binary object mask for each
region of interest.

4.3. Deep Learning Models Applied to Fruit Classification.
,e system of image classification plays a very important
role in many fields. Recognition of images and DL are rising
so fast and they help more and more fields. Classification of
fruit is a complicated problem because of all the variations.
When it comes to classification, there are usually two issues:
(i) the grading by fruit of different types (for example,
differentiating between apples and oranges) and (ii) the
grading of same fruit varieties (e.g., to differentiate among
apple varieties such as red delicious, honey crisp, golden
delicious, gala, and so on). But even with the first type of
issue, it remains difficult to achieve precise classification
because of form, color, maturity variations, and so on.
Another concern is the precision of the classification DL
models. Table 2 summarizes the different DL models applied
to fruit classification. We discussed different researchers’ DL
models used in fruit classification below.

4.3.1. Convolutional Autoencoder-Attention-Based DenseNet
(CAE-ADN). ,is model was proposed by Xue et al. [109]
for hybrid deep learning-based fruit classification. ,is
model pretrained images with a convolution autoencoder
and extracted image features using an attention-based
DenseNet. In the first part of the system, the greedy layerwise
CAE is pretrained with an unsupervised method with an
image set. Initializing a variety of weights and ADN biases
using a CAE structure, the supervised ADN with the ground
truth is applied to the second part of the system. ,e last
section of the system includes a forecast of the fruit group.

4.3.2. Simplified CNN Architecture (9-Layer CNN).
Katarzyna and Pawel [74] proposed the use of a 9-layer CNN
termed as simplified CNN for the task of fruit variety clas-
sification in uncertainty conditions of retail sales. ,is is an
architecture of a deep neural network with 9 layers. ,e first
layer is a 150×150× 3-pixel input layer, which was resized to
an image of 320× 258× 3 pixels. ,e next four stages com-
prise two trails with maximum pooling layers that have no
padding using the receptive field (convolutional kernel) of
3× 3. ,e layers have feature maps of 32 and 64, respectively.
Non-linear ReLU (rectifier linear unit) is used as the acti-
vation layer in the convolution layers. ,e maximum pooling
strategy was used in the third and fifth layers to minimize
dimensionality and simultaneously catch the features in the
subregions binned [116]. In the final step, the fully connected
layers were used to identify the fruit on the preceding dropout
layer. 64 ReLU fully connected neurons were provided in the
8th layer. ,e final layer of the classifier consists of 6 SoftMax
neurons, corresponding to the 6 different types of apples. ,e
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Adam algorithm with cross-entropy was used as a loss
function to train the CNN model [92].

4.3.3. Pure Convolutional Neural Network (PCNN+GAP).
PCNN is a classification framework employed for the task of
fruit image classification and was proposed by Nuske et al.

[61]. ,e architecture is simplified with a minimum number
of parameters, which are specified as input, convolutional
layers, strides, ReLU, GAP layer, and SoftMax.,e PCNN has
7 layers, and some of them are progressively followed with
stride. In addition, the authors employed the recently
established global average pooling (GAP) layer which has been
shown to be highly successful to minimize overfitting and take

Table 2: Summary of the deep learning models applied to fruit classification.

Ref/year DL model Dataset Dataset partition Accuracy
[100]
2015 CNN Personalized Dataset, UEC-

FOOD100 — 80.8% SF, 60.9% MF

[101]
2017 Modified VGG Personalized Dataset 80% Train, 20% Validation 95.6%

[102]
2017 MCNN ImageNet — 74% WDA 90% DA

[14] 2017 13-layer CNN Veg Fruit Dataset 63000 Train, 1800 Test 94.94%
[103]
2018 PCNN+GAP Fruit 360 80% Train, 20% Test 98.88%

[103]
2018 CNN FC-L Fruit 360 80% Train, 20% Test 97.41%

[103]
2018 CNN FC-L Dropout Fruit 360 80% Train, 20% Test 97.87%

[104]
2018 MAlexNet Personalized ImageNet 80% Train, 20% Test 92.1%

[105]
2018 DCNN Personalized 30082 Train, 7520 Validation, 6804

Test 90%

[74] 2018 6-layer CNN Personalized 900 Train, 900 Test 91.44%
[106]
2018 8-layer CNN VegFru 50% Train, 50% Validation, 50%

Test 96.67%

[74] 2019 9-layer CNN COCO apple class 70% Train, 15% Validation, 15%
Test 99.78%

[107]
2019 LW models TL, Fruit 360 80% Train, 20% Test 98.7%

[108]
2019 DCNN models Fruit 360 80% Train, 20% Test 99.6%

[24] 2019 VGG-
16 +GAP SPD, Personalized 85% Train, 5% Validation, 15% Test 99.49%

[24] 2019 LA SPD, Personalized 85% Train, 5% Validation, 15% Test 99.75%, 96.75

[39] 2019 M-GNet Hyperspectral Images 2000 Train, 700 Validation, 125
Test

88.15% PRGB 85.93% LC 92.23%
CK

[109]
2020 CAE-AND Fruit 26, Fruit 15 85,260 Train, 38,952 Test 95.86%, 93.78%

[110]
2020 InterFruit InterFruit 70% Train, 30% Test 92.74%

[111]
2020 VGGNet — — —

[112]
2020 CNN SL Orange Fruit 60% Train, 20% Validation, 20%

Test —

[109]
2020 ResNet-500 Fruit 26, Fruit 15 80% Train, 20% Test 93.59%, 91.44%

[109]
2020 DenseNet-169 Fruit 26 Fruit 15 80% Train, 20% Test 93.87%, 91.46%

[113]
2020 Deep CNN Cheery — 99.4%

[114]
2020 MobileNetv2 A O B — 95% PB 93% WPB

[115]
2020 EDLS Fruits Fresh, Fruit-360, Rotten for

Classification — —

DL: deep learning, TL: transfer learning, SPD: Supermarket Produce Dataset, PT�pretrained dataset, PB: plastic bags, WPB: without plastic bags, A O B:
apples, oranges, and bananas, WDA: without data augmentation, DA� data augmentation, SF: single food, MF: multi-food, PRGB: with pseudo-RGB images,
LC: with linear combinations, and CK: with convolutional kernels.
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the average of entire characteristic maps. ,e convolutional
layer was used to extract the feature maps from input images
by linear convolutional filter accompanied by non-linear
functions (ReLU, sigmoid, tanh, and so on). Afterwards,
extracted feature maps are sent into another layer which is
followed by a stride. Downsampling is done in PCNNby using
a convolutional layer accompanied with stride.

4.3.4. Convolutional Neural Network + Fully Connected
Layer (CNN+FC Layer). ,is model was used to make
comparison with the PCNN+GAP model. It is worth to
note that it is deployed for the task of fruit image classifi-
cation. It is a classical CNNwhich contains six convolutional
layers and three maximum pooling layers for dimension
reduction along with stride 2 and a fully connected layer.

4.3.5. Convolutional Neural Network + Fully Connected
Layer +Dropout (CNN+FC Layer +Dropout). ,is is a fruit
image classification network that added dropout layers to a
CNN and fully connected network to avoid overfitting by
Kausar et al. [103] and was used to make comparison with
pure CNN. It is a classical CNN which contains six con-
volutional layers and three maximum pooling layers for
dimension reduction along with stride 2 and a fully con-
nected layer.

4.3.6. InterFruit. ,is is a DL network proposed by Liu [110]
for classifying fruit from images. InterFruit is a stack ar-
chitecture integrating AlexNet component, ResNet com-
ponent, Inception component, and 3 fully connected layers
with no need for extracting color and texture features. ,e
last fully connected layer, in particular, played a role in
measuring and generating results of various fruits (classi-
fier). ,e Adam optimizer was used to eliminate errors and
cross-entropy loss was used as a cost function.

4.3.7. Lightweight Models (LW Models). Lightweight model
proposed here is the integration of MobileNet V2 and
ShuffleNet V2 [117, 118]. ,is model was proposed by Bac
et al. [63] and is composed of two main parts: a feature
extractor (MobileNet V2 and ShuffleNet V2) for its speed
and accuracy and the output layer. A global average pooling
follows immediately after the feature extractor. ,e output is
normalized using the SoftMax function [16]. For network
optimization, the Adam optimizer was more correctly used
to adjust the stochastic gradient descent [92]. AMSGrad is
used to boost the optimizer [119].

4.3.8. Deep Convolutional Neural Network Model (DCNN).
Alzubaidi et al. [108] used this model for multi-class clas-
sification of fruits. In the beginning, the model begins with
two conventional convolutional layers of 3× 3, 5× 5, to
decrease input size. In order to accelerate training processes
and prevent gradient problems, each convolutional layer is
accompanied by batch normalization and rectified linear
unit layers. Four blocks of parallel convolutional layers were

used to extract the characteristics from the conventional
convolutional layers. ,ere are four convolutional layers
operating in parallel on the first block, followed by the
output of four convolutional layers and conventional con-
volutional layers in the first concatenation layer using re-
sidual connections. Overlaying problems were avoided by
using three fully connected layers having two dropout layers
in-between. In the end, 118 fruit groups were classified using
SoftMax.

4.3.9. CNN-Based Architecture (CNN-BA). We saw the use
of this CNN model in classifying recognized fruits and
validating the hidden layers’ accuracies in the work. Two
convolutional layers after the input layer are followed by
max pooling layer and two fully connected layers, respec-
tively. ,e input layer receives 30,000 neurons as the input
data, followed by the first convolutional layer with 64 filters
and a kernel size of 3× 3 pixels and the activation function of
rectified linear unit (ReLU). ,e second convolutional layer
receives the same number of filters and kernel size as that of
the first convolutional layer. A LeCun uniform kernel ini-
tializer is used for initialization of the weights along with the
2 convolutional layers. ReLU is used to increase the effi-
ciency of all convolutional layers and fully connected layers
as an activation function.

4.3.10. VGGNet: A Variant of Convolutional Neural Network.
,is model intends to train a VGGNet to recognize more
than one label in a single instance of image sample.,e input
layer accepts a fixed 96× 96 RGB image size. ,en, a stack of
convolution layers will process the image. ,e convolutional
layers have a 3× 3 size each of multiple filters, whereas the
last convolutional layer has a 1× 1 size filter which is the
linear transformation of the input data accompanied by a
non-linear convolutional layer. ,e maximum pooling
layers follow immediately after the convolutional layers
which have a set of 2× 2 filters with stride of 2, whereas the
stride is set to 1 in the convolution layer. ,e space padding
is set so that after the convolution step, the space resolution
remains. A sigmoid activation layer is used for the training. 3
fully connected layers are set after the layers of the normal
VGGNet architecture.

4.3.11. CNN Architecture with Several Different Layers (CNN
SL). ,is is a CNN architecture with several layers, in-
cluding four convolution layers, two maximum pooling
layers with kernel size of 3× 3, dropout layer, flatten layer,
and dense layer. Asriny et al. [112] employed this model for
the task of orange fruit image classification.,e hidden layer
contains 256 nodes, and they compared the use of both tanh
and ReLU activation functions to ascertain the best model
performance.

4.3.12. Residual Networks (ResNet-500). ResNet was first
proposed by He et al. [120]. ,is model was used as a
baseline in comparison to CAE-AND. ,e model has the
same parameter number as that of CAE-AND.
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4.3.13. Dense Convolutional Network (DenseNet-169).
DenseNet was first employed in the work of Li et al. [121].
Many researchers have adopted this model for different
tasks, where it was used as a baseline in comparison to CAE-
AND for the task of fruit classification. A 16-output-channel
convolution was performed first on the input images before
entering the first dense block.

A one-pixel zero padding was done on every side of the
inputs of the convolutional layers with 3× 3 kernel size for
the benefit of size fitting the feature map.,e transition layer
used in-between two contiguous dense blocks is a 1× 1
convolution followed by an average pooling of size 2× 2.
After the final dense block’s global average pooling is
completed, a SoftMax classifier is used. ,e three dense
blocks’ feature map is of size 32× 32, 16×16, and 8× 8,
respectively. All the layer-to-layer connection was done in a
feedforward style.

4.3.14. Deep CNN Based on Hybrid Pooling Approach (Deep
CNN). Momeny et al. [113] utilized this model for an ac-
curate classification of cherry fruit. ,is model comprises 4
convolutional layers which use different kernels for the input
image convolving and 3 hybrid maximum pooling layers for
the network parameter reduction. It accepts RBG images of
fixed size of 64× 64 as input.,emaximum pool layers come
immediately after the convolutional layers, whereas ReLU
was used as the activation function. Batch normalization was
implemented between the convolution layer and the ReLU
layer to speed up the training as well as reduce the sensitivity
of the network initialization.

4.3.15. VGG-16-Based Architecture. VGG-16 is a deep CNN
model applied in the industrial sector by Hossain et al. [24]
for automatic classification of fruits. It consists of 5 con-
volutional layers of size 3× 3 with same kernel size within
each layer and a maximum pooling layer. ,e kernel in-
creases from 64 in the first layer to 512 in the last layer. ,e
number of learnable layers in the network is 16 in total.

4.3.16. Light Architecture (LA). ,is was seen in the work for
automatic fruit classification using DL for industrial ap-
plications. ,is model involves three steps: preprocessing of
the data, data feature extraction, and classification. ,e
images were cropped in the preprocessing step to create an
image with the same height and width, which are both equal
to the smallest in the original image. All images were then
resized to the regular size of 64× 64× 3, which is the input
form of the first layer of the model. ,e feature transfor-
mation step consists of 3 convolutional blocks of kernel size
3× 3 followed by max pooling layers of kernel size 2× 2
before a fully connected layer. ,e transformation of the
features was carried out through repeated convolution and
max pooling operations.,e last step is the classification step
where the 2D feature maps from the previous layers are
flattened, i.e., transforming the 2D feature into a 1D feature
vector, and then fed into the output layer which is fully
connected layer with same number of classes for

classification. Activation function used is SoftMax, and
dropout layers were implemented after each pooling layer.

4.3.17. Google Inception V3 Model + Simple CNN (GIM-
CNN). ,is setting was used for the classification of fruits
and vegetables with its nutrients. ,e Google Inception V3
model was used to process the images for the CNN. GAP
(global average pooling) was applied to the dataset (reshaped
to size 299× 299× 3) for averaging the features of the total
images input. To avoid overfitting, dropout of size 0.5 was
applied with stochastic gradient descent to achieve a better
accuracy. ,ey implemented and trained it for 32 epochs
with 3 defined callbacks to record the progress in a log file.

4.3.18. 13-Layer Deep Convolutional Neural Network.
,ismodel was employed for the task of classification of fruit
category. ,e preprocessed fruit image is inputted directly
by the input layer. ,e convolutional layers performs a 2D
convolution for 3D input and filter. Convolution is followed
by the activation function ReLU which accepts the feature
map neurons, whereas the output of the activation function
is replaced by the maximum pooling layer. ,e SoftMax
layer utilized the SoftMax function, whereas the fully con-
nected layer multiplies the input weight and then adds a bias
vector.

4.3.19. Modified DCNN. ,is is a two-way DL neural net-
work employed in the work for automatic fruit recognition
for future class of fruit. ,e constructed network consists of
150×150× 3 RGB as input layer, four hidden layers, i.e.,
three convolutional pooling layers with kernel size of 3× 3
and strid of 1 pixel for feature map extraction followed by a
max pooling layer having size of 2× 2. ,e hidden layers are
followed by a fully connected layer with 64 ReLU. Next to the
fully connected layer, the network has an output layer having
15 SoftMax neurons, each for one fruit class. ,e activation
function used in this model is ReLU. In summary, the first
phase of this network is the convolutional neural network
with maximum pooling and the second phase is the fully
connected layer. Hussain et al. [105] went further to employ
this architecture for the purpose of automatic fruit recog-
nition for commercial source trace system with changes in
the network parameters.

4.3.20. MobileNetV2. To speed up the checkout process,
Rojas-Aranda et al. [114] utilized an image classification
lightweight CNN-based model to classify fruits in retail
stores.

4.3.21. Modified GoogleNet (M-GNet). ,is is a modified
version of the GoogleNet architecture. Steinbrener et al. [39]
employed this architecture for hyperspectral fruit and
vegetable classification. ,e main part of the architecture is
the concatenation of the information from the different parts
of the spatial correlation by the inception module. ,e ar-
chitecture having a 9-inception module also consists of
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simple convolutional and fully connected layers. ,e
modification of this architecture from the original Goo-
gleNet comes in the kernel size and the addition of two
auxiliary classifiers situated within the network at lower
layers to increase the learning rate of the layers. ,e kernel
size used here is of 1× 1, 3× 3, and 5× 5 size concatenated to
extract image features.

4.3.22. Modified CNN (MCNN). CNN is a widely used ar-
chitecture for fruit classification. Nordin et al. [38] used a 4-
layer architecture with the exception of the final layer and
input layer which is not regarded as a layer. ,e 4 layers are
made up of 3 convolutional-pooling layers and 1 fully
connected layer. ,e first convolutional layer has a kernel
size of 7× 7 with a stride of 1 followed by maximum pooling
of size 2× 2. ,e second and third convolutional layers use a
kernel size of 5× 5 and 3× 3 each. ,e first three layers use
the ReLU activation function while the last layers have 10
SoftMax neurons corresponding to the 10 categories of fruit.
,e network was trained with the stochastic gradient descent
with a cross-entropy cost function. ,ey applied dropout to
the third and the fully connected layer of size 0.25 and 0.5,
respectively.

4.3.23. Modified AlexNet (MAlexNet). Zhu et al. [104]
employed the use of AlexNet in a modified way for the
classification of vegetables. ,ey utilized the ImageNet
dataset.,emodification comes from the replacement of the
traditional sigmoid function and the tanh function with the
ReLU activation function to speed up the model training.

4.3.24. Six-Layer CNN (6-Layer CNN). ,is is a normal
convolutional neural network setup with 4 Conv2d layers
and two fully connected layers employed by Katarzyna and
Pawel [74] to classify fruits.

4.3.25. Eight-Layer CNN (8-Layer CNN). ,is a modified
deep CNN with a PReLu (parametric rectified linear unit) as
the activation function instead of the plain ReLU and a
dropout layer positioned before each fully connected layer.
For the avoidance of overfitting, Wang and Chen [106]
applied data augmentation for the purpose of fruit category
classification.

4.3.26. Embedded Deep Learning Support (EDLS). ,is is an
integration of DLmodels for the purpose of fruit recognition
and classification on embedded systems as seen in the work
of Unal et al. [115]. ,e different arrangements were the use
of Adam optimizer and batch size of 16 in two convolutional
layers of size 3× 3 with 2 filters and 4 filters, respectively,
applied to the first layer and second layer. ,e second ar-
rangement takes the same shape as that of the first one but
with an RMSProp optimizer. Using the same configuration
in the second experiment, they changed the batch size to 32
and trained it only on the Fruit 360 dataset. ,e 3rd ar-
rangement is also similar to the first and second

arrangements but with the optimizer changed to stochastic
gradient descent, batch size of 32, and 4 filters applied to
both layers. Likewise, using the same configuration for the
third arrangement, the authors changed the batch size to 16
and optimizer to SGD and applied two filters at the first layer
and four filters at the second layer.

4.3.27. Modified VGG. ,is is a model that goes deeper than
the usual CNN for a high classification and recognition rate.
Zeng et al. [101] employed this model for the purpose of fruit
and vegetable classification system. ,e input layer receives
224× 224 RGB images and subtracts the mean RGB value for
each pixel. ,e filter is of size 3× 3 and a stride of 1. ,e
maximum pooling is of size 2× 2 with stride size of 2. ,e
two fully connected layers have 4096 channels each, and the
final output layer is 26, i.e., 26 classes of fruits.

4.3.28. CNN. Zhang et al. [100] employed the CNN for the
purpose of fruit image recognition. ,e input RGB image
is of size 128 ×128, with 30 kernel size of 11 × 11 and a
sparse connectivity of the kernels from the second to the
fourth layer. Each of the 120 4 × 4 kernels in the fifth
convolutional layer is used. ,e output of the final fully
connected layer is input into a 100-way SoftMax function
with 1000 neurons for the dataset’s 100 classes of dataset
labels.

5. Benchmark Datasets

Sampled images consisting of real-world information are
referred to as datasets, and the term data acquisition is the
method of digital collection of such images. For obtaining a
good classifier, a high-quality dataset is important. ,e most
difficult detection task is the absence of sufficient labelled
samples. During the course of our research, we found that
most researchers, especially for object detection, deal with
real-time identification of fruits mostly in orchards. Each
researcher utilized his/her own dataset. We will briefly
discuss some of the datasets deployed by researchers for the
classification of fruits. We have used various datasets but will
focus more on the dataset that was made available by the
authors online. Table 3 summarizes the datasets recorded in
our reviewed papers that were not made available for other
authors to use in their work. We will briefly discuss the
dataset made available by the authors within our reviewed
publications.

5.1. OrchardData. ,e orchard data comprise three types of
fruit: mangos, almonds, and apples. ,ey were acquired in
an orchard during the day time in Victoria and Queensland,
Australia. A sensor was mounted on an all-round research
ground vehicle. ,e vehicle went through numerous lines of
the orchards capturing image data from the trees. ,e total
number of the dataset is 3232 with the training set� 2268,
testing set� 482, and validation set� 482. For the number of
images in each class, the mango class has 1154, 270, and 270
images for the training, testing, and validation sets while the
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almond class has 385, 100, and 100 images, respectively. ,e
apple class contains 729, 112, and 112 images for the
training, testing, and validation sets, respectively. ,e
dataset is accessible online via http://data.acfr.usyd.edu.au/
ag/treecrops/2016-multifruit.

5.2. Fruit 360. ,is is the most popular and widely used
dataset for fruit classification by authors. It was first used by
Muresan and Oltean [25]. Various researchers [75, 103, 108]
also used this dataset in their work. ,e Fruit 360 dataset
consists of 81,226 images of 120 classes of fruits which is
divided into three sets: the training set which contains 60,498
image datasets, the test set which contains 20,622 image
datasets, and lastly the validation dataset which contains 106
image datasets. ,e dataset was acquired by rotating a low
(3 rpm) speed motor and recording (20 sec per each re-
cording). Since the lighting conditions were not consistent,
the backdrop of all photographs was transformed into white
color because of the variety. All the images had a white
background of 100/100 pixels. Sample of the Fruit 360
dataset is shown in Figure 4. It is accessible online via http://
www.kaggle.com/moltean/fruits.

5.3. Supermarket Produce Dataset. ,is is a small public
dataset that Rocha et al. [122] obtained at various times and
dates back to couple of years. With a fixed resolution of 1024
to 768, all images were collected in JPG format. ,e image
data collection includes 15 classes: Agata Potato class
contains 201 images, Asterix Potato class contains 182
images, Cashew class contains 210 images, Diamond Peach
class contains 211 images, Fuji Apple class contains 212
images, Granny Smith Apple class contains 155 images,
Honeydew Melon class contains 145 images, Kiwi class
contains 171 images, Nectarine class contains 247 images,
Onion class contains 75 images, Orange class contains 103
images, Plum class contains 264 images, Tahiti Lime class
contains 106 images, Watermelon class contains 192 images,
andWilliams Pear class contains 159 images. A total of 2,633
RGB images with color channel of 8 bits per pixel are in the
set. Sample of the Supermarket Produce Dataset is shown in
Figure 5. It is accessible online via http://www.vision.caltech.
edu/ImageDatasets.

5.4. InterFruit. ,is contains 3,139 images making a total of
40 classes obtained from Baidu, JD.com, Google, and Taobao.
,e images were cropped to 300× 300 pixels. 70% of each
classes of fruit images were randomly set aside for training
while the test set has the remaining 30%. ,is dataset was

used by Liu [110]. Sample of the InterFruit dataset is shown
in Figure 6. It is accessible via (password� 35d3) https://pan.
baidu.com/s/19LywxsGuMC9laDiou03fxg.

6. Benchmarked Evaluation Indices

Various researchers employ different evaluation metrics
based on the objective of the research. We describe the most
widely and commonly used evaluation metrics in the field of
object detection and classification: precision, recall, average
precision, mean average precision, and the F1-score. Pre-
cision and recall are mathematically stated as [123–132]

precision �
TP

TP + FP
∗ 100%, (16)

recall �
TP

TP + FN
∗ 100%, (17)

where TP� true positive indicating that the predicted out-
come corresponds to the actual outcome, FP� false positive
indicating that the predicted outcome does not correspond
to the actual outcome, and FN� false negative indicating
that the predicted outcome does not correspond to the
unrecognized outcome. ,e average precision is calculated
mathematically as

PAverage � 􏽘

N(class)

j�1
precision(j)∗ recall(j)∗ 100%, (18)

where N (class) represents the number of all the classes in the
dataset, and thus mAP is calculated mathematically as

mAP �
PAverage

N(class)
. (19)

Note. ,e higher the mAP value, the better the recognition
accuracy of the framework and vice versa.,e F1-score deals
with the accuracy and recall value of the model. It is used to
calculate the speed in the recognition rate. ,e more the F1-
score value, the greater the speed in the recognition rate of
the framework, and it is calculated mathematically as

F1 − score �
2precision∗ recall
precision + recall

∗ 100%. (20)

7. Discussion

We present a comprehensive survey on the application of DL
models in fruit detection and classification. We analyzed the

Table 3: Benchmark datasets.

Name No. of classes Total no. Train set Val set Test set Ref.
Orange Fruit 5 classes 1000 60% 20% 20% [112]
Fruit 26 26 classes 124,212 85,260 — 20% [109]
Fruit 15 15 classes 44,406 — — 38,952 [109]
Field Farm 7 classes 122 100 — 22 [71]
Cherry 2 classes 14,380 — — — [113]
Cherry 1 class 15,000 60% 20% 20% [76]
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different models employed, the identified datasets, and the
up-to-date researchers’ contribution in this aspect. We will
discuss the key challenges facing fruit detection and clas-
sification and highlight our observation from the different
works surveyed. First and foremost, we will discuss our
finding regarding the various DL models employed by re-
searchers on both fruit detection and classification tasks. We
will partition the various architectures into two main types,
namely, “From-Scratch-Training” and “Pretrained” archi-
tectures. From-Scratch-Training signifies that the authors
built the architectures from scratch for a specific task while
“Pretrained” signifies that authors used a well-known DL
model such as YOLO, Faster CNN, Alex Net, among others.
In addition to the “Pretrained” architectures, we can still
break it down into two subdivisions, namely, “transfer
learning” and “modified pretrained.” “Transfer learning”
means borrowing another architecture to fit into a new task
especially when one has minimum dataset available for a
specific task, whereas “modified pretrained” suggests the
adjustment of the pretrained architecture to adapt to the new
objective of the task. It is worth to note that the adjustment
made to the modified pretrained depends on the kind of

work to be performed. For instance, if the kind of task to be
performed is more complex and a greater number of be-
haviors are to be studied, then the number of layers and
filters must be increased.

Taking note from Figure 7, we noticed that the use of
Trained-From-Scratch is highly employed in classification
task compared to the detection task, whereas the use of
modified pretrained model is highly used in the detection
task against classification task. It is seen from the results of
the various papers that DL model (CNN) achieved results
above 95% noting that DL models are the best approach
towards fruit classification against the other traditional
methods. Unlike fruit classification, fruit detection tasks
involve segmenting fruits in the orchard which makes the
tasks more complex. It is required to design an accurate DL
model architecture that can efficiently perform a semantic
segmentation in the open-air images. Judging from Figure 6,
we can agree that transfer learning (modified pretrained
models) is the best method over others.

Faster region-based convolutional neural network (Fast-
RCNN) is the most widely used architecture in terms of
modifying a pretrained model for detection tasks. It is made
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Figure 4: Sample of the Fruit 360 dataset.

Mathematical Problems in Engineering 17



up of a feature extractor model and a region proposal model.
Most researchers find this model easier to employ by
changing the feature extractor to their taste, thereby coming

up with a modified architecture or new architecture.
Masked-RCNN which follows the same principle as that of
Faster-RCNN has seen much utilization for the purpose of

Agata-potato Asterix-potato Cashew Diamond-peach Fuji-apple

Granny-smith-apple Honeydew-melon Kiwi Nectarine Onion

Orange Plum Spanish-peach Tahiti-lime Water-melon

Figure 5: Sample of the Supermarket Produce Dataset.

Lemon Longan Loquat Mango Mangosteen

Mulberry Olive Orange Passion fruit Peach

Pear Persimmon Pineapple Pitaya Plum

Prunus Rambutan Sakyamuni Strawberry Watermelon

Figure 6: Sample of the InterFruit dataset.
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object detection. We noticed that most researchers employ
the ResNet or the VGG as the feature extractor while
deploying modified Faster-RCNN and Masked CNN.
Currently in the world of object detection, the YOLO (You
Only Look Once) has earned popularity due to its ability to
detect tiny object of which various researchers utilized
different versions for the purpose of fruit detection [133].

Moreover, sequel to the dataset employed by the re-
searches, we figured out that dataset is the most challenging
factor facing fruit detection and classification. Due to
minimal availability of fruit dataset, fruit detection and
classification has been a big issue in the world of AI. To train
a DL classifier, large datasets are required, comprising a vast
number of parameters to be tuned to control training
convergence. ,e availability of large, multi-labelled, and
well-annotated dataset repositories will eliminate the need
for researchers to collect massive datasets in different real
conditions and environments that would need the oversight
of agricultural specialists for interpretation. ,e most widely
used dataset for fruit classification is the “Fruit 360” dataset.
It contains 120 classes, and each class has different categories
of fruit and is split into three sets: training set contains
60,498 images, validation set has 106 images, and testing set
has 20,622 images, and the dataset contains 81,226 images in
total as illustrated in Figure 8. A major drawback of this
dataset is that the images are small (100×100 pixels), which
makes it difficult to differentiate between some fruits. ,e
number of images in each class is not equal which will result
in the accurate classification of classes with huge number of
images compared to the classes with few datasets. Also, the
images have no background, and thus it does not scale very
well to real-world applications. Several researchers
[113, 122, 134] tried to develop a more complex dataset for
the same purpose of fruit classification. But the dataset does
not have a sufficient number of images. We recommend to
apply a data augmentation technique in issues like this. Data
augmentation is a solution to solve the limitations of datasets

of which generative adversarial network (GAN) is a typical
example. It consists of an increase in data training, including
rotations, translations, and mirrors, by carrying out a series
of transformations. ,ere are two phases in the GAN al-
gorithm: a generative phase depicting the input image
distribution and the discriminatory phase evaluating the
likely output sample. Many GAN models have been de-
veloped as attempts to overcome the need for large-scale
training datasets such as cycle consistent GAN, deep con-
volutional GAN, conditional GANs, autoregressive deep
convolutional GAN, progressive growing GAN, and so on.
Transfer learning (TL) is also recommended as a solution to
minimal dataset issue as seen in the works of Sa et al. and
Singh et al. [71, 134]. ,e method of TL is focused on a DL
network that has been previously developed and updated to
build a new mission. TL makes it possible for a CNN al-
gorithm to obtain weights from a particular model already
preworked on a broader dataset. In order to easily move the
weights to the proposed new model and classes in the target
dataset, the finishing layer is to be replaced with a new layer.
,erefore, a pretrained network may be used to learn new
trends from new data. It is also helpful if we do not have
adequate knowledge to train the network. We therefore use a
pretrained model for the task in a fitting dataset. ,e main
concept is to freeze some network layers and change input
and output layers normally. TL on the other hand will work
for limited number of fruit categories as most of the datasets
used in the TL have limited number of fruit categories.

In addition, as with fruit detection, we partition datasets
in three aspects, namely, (i) images captured with deep
sensors (RGB-D), which allow for a precise estimate of the
distance from the fruit in robotic measurement; (ii) RGB
images captured with a multi-camera system for a wider
view and distance measurement; and (iii) combining NIR
and LiDAR sensors with RGB cameras in multi-sensor
systems. Attributes are the physical features of an object that
can separate it from other objects. Fruit has many physical

DETECTION TASK
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Trained-From-Scratch
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Figure 7: Graphical representation of DL model deployment in fruit detection and classification.
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features such as form, texture, color, and dimension, which
can be used to accurately distinguish them. Different classes
of fruits are distinct. ,e variants of the interclass are es-
sential improvements, e.g., color, form, and shape variations,
while variations of the intraclass are usually evenmore subtle
and impossible to discern, for instance, various types of
mangos or apples have slight feature variations. ,e system
will deal with inter and intraclass classification by an optimal
range of functions. ,e other challenging domain is the
computer-based feature representation. Significant research
on the portrayal of characteristics has been published. In-
vestigations have also shown that the successful classification
of fruit or object usually cannot be deemed adequate for a
single feature. We came up with the following summary of
our discussion. In fruit classification studies, we found that
no evaluation has been carried out with multiple types of
fruit in the same image, limiting themselves to images with a
single kind of fruit, either individually or grouped. ,us, the
challenge is to design a CNN model for multi-detection and
classification of different kinds of fruit at the same time.

(i) We present the possible solution to eliminate the
scarcity of large dataset (data augmentation such as
GAN and TL) especially for the purpose of fruit
detection.

(ii) ,e use of TL in fruit detection basically supports
limited number of fruits. We noted that most of the
established TL models used mangos or oranges as
dataset which literally means that most TL models
are trained with few classes of fruits compared to the
131 classes of fruit in the Fruit 360 dataset.

(iii) ,ere is a need for researchers to invest more on the
development of fruit dataset that we be used for
both object detection and classification. Deploying a
fruit detection system in an agro-environment
needs the detection system to be adequately trained
with all classes of fruits.

(iv) ,e development of fruit detection models is ex-
pensive and time wasting as real-time data collec-
tion was done by the authors.

(v) Currently, Fruit 360 dataset is the largest dataset for
the purpose of fruit classification. ,is is a good
dataset in terms of numbers, but using it for training
for real-time application will result in many mis-
classifications as the dataset is too small and does
not have challenging factor (noise) in the
background.

7.1. Technological Advantage of the Aforementioned Deep
Learning Frameworks on Fruit Detection and Classification.
Deep and complex image feature information is difficult to
extract using the traditional methods as they only extract
underlying features, whereas deep learning frameworks have
demonstrated to be efficient in solving this issue by giving
room for conducting unsupervised learning from the
original input image, thus extracting multi-image feature
information which comprises low, intermediate, and high-
level sematic features of the input image. On the other hand,
DL frameworks automatically learn features from large input
image without manual manipulations as in cases for tra-
ditional frameworks, thus showing that DL frameworks have
multiple layers that help in their autonomous learning
tendency and feature extraction, extracting image features
from the input image for detection and classification. ,e
good thing about DL frameworks is the ability to improve
the computational power to fit into the recent detection and
classification needs such as the growth of training samples as
well as the computational power.

7.2. Technological Disadvantage of the Aforementioned Deep
Learning Frameworks on Fruit Detection and Classification.
Some the frameworks which use network as feature extractor
solely depend on other classifiers for the final classification
results, which indicates that if the network outputs wrong
features, the classification result will be very poor. ,e use of
sliding window for classification requires the size selection to
be accurate which can only get a rough position and slow
down the speed of the sliding and traversal. Multi-task
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Figure 8: Illustration of classes of Fruit 360.
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learning mostly has a very complex network structure,
thereby requiring pixel-to-pixel labelling when trying to add
the segmentation branches.

8. Future Work and Recommendation

Taking hint from the work of Zhang et al. [135] on plant leaf
disease recognition, we saw that the authors constructed a
three-channel CNN framework which accepts three color
components, thereby reducing the known DL requirement
of large dataset in training and achieving a high detection
accuracy. Such idea should be adopted in designing a fruit
detection and classification system, thereby overcoming the
issues of the small availability of training datasets. Looking at
the acquisition of dataset used, most researchers focused on
the images generated in the visible range, whereas a lot of
information is contained in the electromagnetic wave out-
side the visible range, and thus researchers should pay at-
tention to the information such as multi-spectral, near
infrared, and visible light during dataset acquisition.

Looking at the current trend in DL, in the field of fruit
detection and classification, researchers widely adopt the
supervised learning method, thereby requiring that the
datasets for training must be large. Manually labelling of the
datasets takes a lot of time and manpower, and thus re-
searchers are recommended to venture into the unsuper-
vised mode of learning. Deploying trained DL models on
mobile platforms are unsuitable due to the large amount of
memory needed during testing as well as the time con-
sumption of the models. It is very critical for researchers to
study how to reduce complexity as well as study fast exe-
cuting models without affecting the result. Generally,
hyperparameter selection has been a big problem in deep
learning especially in new task. It affects the model result
positively and negatively, thus having greater effect on the
final training results.

Attention mechanism (AM) has gained a lot of attention
in computer vision fields such as object detection and
classification [136].,ere is need to incorporate AM into DL
frameworks for the task of fruit detection and classification
since AM has a high capacity to pick features. Knowing that
CNN and RNN-based models are widely used in fruit de-
tection and classification, we suggest the use of AM to extract
the fruit features which are difficult to distinguish due to
their size, shape, and color and enable them into another
CNN for information fusion. ,e goal of AM which is to
predict the weight vector for feature maps by model learning
makes the integration one of the possible best solutions to
tackle the issue of fruit detection and classification.

Recent article has shown the effect of adversarial attack
in deep learning models. Even though DL models have
shown great success at many complex tasks, they are not as
intelligent as we might think. DL models have been found to
be sensitive to what is known as adversarial example. ,e
input in an adversarial example is fictitiously generated yet
identical to the actual input in terms of perception. Trying to
demonstrate the effects of the adversarial attack on fruit
detection and classification, we employed an attack mech-
anism following the fast gradient sign attack (FGSM). We

explain and harnessed adversarial examples which are most
prevalent adversarial attacks in our experiments in Section 9.
Figure 9(a) illustrates the pictorial view of the attacked
images at different epsilon while Figure 9(b) shows the
classification accuracy of the attacked images.We can vividly
note that the more the epsilon rate is, the more the clas-
sification accuracy drops; thus, deep neural network is not
able to correctly classify input when the input is being
attacked, leading to misclassification. In the field of fruit
detection and classification, such misdetection and classi-
fication can cause a lot of harm and damage to humans. In
order to prevent that, we suggest for researchers to develop
an adversarial defense network to withstand attacks during
fruit detection and classification.

9. Experimental Analysis

In order to give basic understanding of what is meant by DL
model to beginner researchers who do not necessarily have
skills in computer science especially in the area of agri-
culture, we present the practical implementation of a simple
DL model (CNN) for a fruit classification task. We used the
PyTorch framework in our implementation. PyTorch is a
famous open-source learning machine library based on
torches that have a wrapper in C. It is an alternative to the
open-source machine library, TensorFlow. It was primarily
developed and published under the modified BSD license by
the Facebook AI Research lab (FAIR). It stores data as a 3D-
based storage system called tensor rather than vector, like
TensorFlow. PyTorch supports many languages, but Python
is extensively the most recognized language of all. PyTorch is
a more flexible library for developing DL-models. However,
Keras and Tensorflow provide built-in architectures with less
flexibility. In DL-based research, PyTorch offers maximum
versatility and speed.

We employed the Fruit 360 dataset in our experiment as
it is currently the widely used dataset in fruit classification by
researchers. We maintain the set value for the training and
testing sets as originally done by the owner. Table 4 shows
our model configurations. We set our hyperparameters
(learning rate, no. of epochs, batch size, and dropout) to
0.001, 40, 15, and 0.5, respectively.Wemade use of the Adam
optimizer which is an extension of the stochastic gradient
descent. Adam optimizer has seen a wider adoption in CV
for DL applications. Figure 10(a) indicates that after 15
epochs, our network achieved a validation accuracy of 100%.
To avoid overfitting, we applied dropout (0.50) to the net-
work from which we observed that the validation loss graph
decreases alongside the training loss. Table 5 illustrates the
details of the employed classifiers, whereas Table 4 shows the
implementation details of the CNN architecture.
Figure 10(a) shows the model training and validation loss.
We plotted the model loss curves against the number of
epochs. Figure 10(b) illustrates the training vs the validation
accuracy of the model.With the help of the dropout, we were
able to overcome overfitting. Our model achieved an overall
classification accuracy of 95%. In order to compare the
performance of our model which is from scratch imple-
mentation and to illustrate more on the application of deep
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learning models to fruit classification, we employed through
transfer learning the ResNet-50 architecture. We set the
parameters as follows: batch size-15, epochs� 40, max
lr� 1e− 3, grad clip� 1e− 1, weight decay� 1e− 4, and opt
func� torch.optim.Adam.

It is very hard to find the correct learning rate as a
comparatively high learning rate induces divergence during
the training of deep learning models, whereas a relatively
poor learning rate leads to a super-fast model. In addition,
we used the “One Cycle Learning Rate Strategy” to slowly
boost the learning rate to the highest rate set by the con-
sumer before eventually dropping to a very low rate. After a
load of exercise, this rate shift happens. Figure 10(c) shows
the training loss vs epoch graph of the ResNet-50 archi-
tecture. We saw the effect of the “One Cycle Learning Rate
Strategy” from epoch 8 to epoch 16, and the architecture
tried to use both highest and lowest values to get the correct
learning rate of which at epoch 30, we noticed the

convergence by the graph. Increasing the number of epochs
and more training explains the advantages of the once cycle
learning rate strategy. ResNet-50 model’s accuracy can be
seen in Figure 10(d) where we plotted the accuracy vs
number of epochs graph. ,e ResNet-50 model achieved
99% classification accuracy on the test set. We noticed a 4%
increase from the CNN model in the classification accuracy.

We have successfully created and trained a deep learning
model based on CNN and ResNet to classify images of fruits
using the Fruit 360 dataset. Table 6 illustrates the classifi-
cation report of the ResNet-50 architecture. We notice a
misclassification at the Lemon, Physalis, and Grapefruit
white class. From our result, we also saw that Adam opti-
mization algorithm serves as a good replacement from the
classical stochastic gradient descent. During the training
process of both models, we saw that the complexity of a
model should correspond to the complexity of the classi-
fication task to be done and amount of dataset employed,

Table 4: Implementation details of the CNN classifier.

Name Kernel Stride Padding Input Output Param# Activation
Conv2d-L1 3× 3 1× 1 1× 1 3×100×100 32×100×100 896 ReLU
Conv2d-L2 3× 3 1× 1 1× 1 32×100×100 64×100×100 18,496 ReLU
MaxP2d 2 2 0 64×100×100 64× 50× 50 — —
Conv2d-L3 3× 3 1× 1 1× 1 64× 64 128× 50× 50 73,856 ReLU
Conv2d-L4 3× 3 1× 1 1× 1 128× 50× 50 128× 50× 50 147, 584 ReLU
MaxP2d 2 2 0 128× 50× 50 128× 25× 25 — —
Conv2d-L5 3× 3 1× 1 1× 1 128× 25× 25 256× 25× 25 295,168 ReLU
Conv2d-L6 3× 3 1× 1 1× 1 256× 25× 25 256× 25× 25 590,080 ReLU
MaxP2d 5 5 — 256× 25× 25 256× 5× 5 — —
FC-L — — 15,000 6,400 1024 6,554,624 ReLU
FC-L — — — 1,024 512 524,800 ReLU
FC-L — — — 512 120 67,203 —
Param#: parameters, Act: activation, Conv2d-L1, L2, L3, L4, L5, L6: convolution 2 dimension layer 1, 2, 3, 4, 5, and 6, MaxP2d: maximum pooling 2 dimension,
and FC-L: fully connected layer.
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Figure 9: Illustration of classes of Fruit 360.
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Table 5: Result comparisons of the deployed classifiers.

Model Training loss Training accuracy Validation loss Validation accuracy Testing accuracy (%)
CNN 0.001 0.999 0.007 0.999 95
ResNet-50 3.803 0.995 3.803 0.996 99
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Figure 10: Experimental result from scratch CNN implementation vs the ResNet-50 architecture. (a) CNN model loss. (b) CNN model
accuracy. (c) ResNet-50 model loss. (d) ResNet-50 model accuracy.

Table 6: Classification report of ResNet-50 model.

Class name Prec. Recall F1-s Support Class name Prec. Recall F1-s Support
Apple Braeburn 1.00 1.00 1.00 24 Cherry Wax Black 1.00 1.00 1.00 26

Apple Crimson Snow 1.00 1.00 1.00 23 Cherry Wax Red 1.00 1.00 1.00 22
Apple Golden 1 1.00 1.00 1.00 30 Cherry Wax Yellow 1.00 1.00 1.00 21
Apple Golden 2 1.00 1.00 1.00 20 Chestnut 1.00 1.00 1.00 16
Apple Golden 3 1.00 1.00 1.00 30 Clementine 1.00 1.00 1.00 21

Apple Granny Smith 1.00 1.00 1.00 17 Cocos 1.00 1.00 1.00 31
Apple Pink Lady 1.00 1.00 1.00 21 Dates 1.00 1.00 1.00 28
Apple Red 1 1.00 1.00 1.00 19 Eggplant 1.00 1.00 1.00 20
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Table 6: Continued.

Class name Prec. Recall F1-s Support Class name Prec. Recall F1-s Support
Apple Red 2 1.00 1.00 1.00 29 Ginger Root 1.00 1.00 1.00 8
Apple Red 3 1.00 1.00 1.00 20 Granadilla 1.00 1.00 1.00 26

Apple Red Delicious 1.00 1.00 1.00 28 Grape Blue 1.00 1.00 1.00 48
Apple Red Yellow 1 1.00 1.00 1.00 29 Grape Pink 1.00 1.00 1.00 23
Apple Red Yellow 2 1.00 1.00 1.00 36 Grape White 1.00 1.00 1.00 37

Apricot 1.00 1.00 1.00 26 Grape White 2 1.00 1.00 1.00 24
Avocado 1.00 1.00 1.00 23 Grape White 3 1.00 1.00 1.00 24

Avocado ripe 1.00 1.00 1.00 17 Grape White 4 1.00 1.00 1.00 30
Banana 1.00 1.00 1.00 25 Grapefruit Pink 1.00 1.00 1.00 21

Banana Lady Finger 1.00 1.00 1.00 21 Grapefruit White 1.00 0.57 0.73 21
Banana Red 1.00 1.00 1.00 27 Guava 1.00 1.00 1.00 19
Beetroot 1.00 1.00 1.00 23 Hazelnut 1.00 1.00 1.00 22
Blueberry 1.00 1.00 1.00 27 Huckleberry 1.00 1.00 1.00 31
Cactus fruit 1.00 1.00 1.00 23 Kaki 1.00 1.00 1.00 33
Cantaloupe 1 1.00 1.00 1.00 24 Kiwi 1.00 1.00 1.00 19
Cantaloupe 2 1.00 1.00 1.00 31 Kohlrabi 1.00 1.00 1.00 18
Carambola 1.00 1.00 1.00 20 Kumquats 1.00 1.00 1.00 26
Cauliflower 1.00 1.00 1.00 35 Lemon 0.71 1.00 0.83 22
Cherry 1 1.00 1.00 1.00 30 Lemon Meyer 1.00 1.00 1.00 30
Cherry 2 1.00 1.00 1.00 39 Limes 1.00 1.00 1.00 29

Cherry Rainier 1.00 1.00 1.00 40 Lychee 1.00 1.00 1.00 19
Mandarine 1.00 1.00 1.00 20 Plum 1.00 1.00 1.00 23
Mango 1.00 1.00 1.00 20 Plum 2 1.00 1.00 1.00 27

Mango Red 1.00 1.00 1.00 23 Plum 3 1.00 1.00 1.00 44
Mangostan 1.00 1.00 1.00 11 Pomegranate 1.00 1.00 1.00 27
Maracuja 1.00 1.00 1.00 22 Pomelo Sweetie 1.00 1.00 1.00 26

Melon Piel de Sapo 1.00 1.00 1.00 44 Potato Red 1.00 1.00 1.00 17
Mulberry 1.00 1.00 1.00 21 Potato Red Washed 1.00 1.00 1.00 29
Nectarine 1.00 1.00 1.00 18 Potato Sweet 1.00 1.00 1.00 22

Nectarine Flat 1.00 1.00 1.00 19 Potato White 1.00 1.00 1.00 32
Nut Forest 1.00 1.00 1.00 8 Quince 1.00 1.00 1.00 20
Nut Pecan 1.00 1.00 1.00 7 Rambutan 1.00 1.00 1.00 26
Onion Red 1.00 1.00 1.00 21 Raspberry 1.00 1.00 1.00 21

Onion Red Peeled 1.00 1.00 1.00 25 Redcurrant 1.00 1.00 1.00 24
Onion White 1.00 1.00 1.00 24 Salak 1.00 1.00 1.00 31

Orange 1.00 1.00 1.00 28 Strawberry 1.00 1.00 1.00 25
Papaya 1.00 1.00 1.00 24 Strawberry Wedge 1.00 1.00 1.00 30

Passion Fruit 1.00 1.00 1.00 17 Tamarillo 1.00 1.00 1.00 20
Peach 1.00 1.00 1.00 28 Tangelo 1.00 1.00 1.00 26
Peach 2 1.00 1.00 1.00 41 Tomato 1 1.00 1.00 1.00 32

Peach Flat 1.00 1.00 1.00 24 Tomato 2 1.00 1.00 1.00 37
Pear 1.00 1.00 1.00 28 Tomato 3 1.00 1.00 1.00 32

Pear Abate 1.00 1.00 1.00 23 Tomato 4 1.00 1.00 1.00 31
Pear Forelle 1.00 1.00 1.00 30 Tomato Cherry Red 1.00 1.00 1.00 23
Pear Kaiser 1.00 1.00 1.00 15 Tomato Maroon 1.00 1.00 1.00 19
Pear Monster 1.00 1.00 1.00 18 Tomato Yellow 1.00 1.00 1.00 15
Pear Red 1.00 1.00 1.00 33 Walnut 1.00 1.00 1.00 37

Pear Williams 1.00 1.00 1.00 26 Tamarillo 1.00 1.00 1.00 20
Pepino 1.00 1.00 1.00 25 Tangelo 1.00 1.00 1.00 26

Pepper Green 1.00 1.00 1.00 16 Tomato 1 1.00 1.00 1.00 32
Pepper Red 1.00 1.00 1.00 39 Tomato 2 1.00 1.00 1.00 37

Pepper Yellow 1.00 1.00 1.00 30 Tomato 3 1.00 1.00 1.00 32
Physalis 1.00 0.96 0.98 26 Tomato 4 1.00 1.00 1.00 31

Physalis with Husk 1.00 1.00 1.00 23 Tomato Cherry Red 1.00 1.00 1.00 23
Pineapple 1.00 1.00 1.00 27 Tomato Maroon 1.00 1.00 1.00 19

Pineapple Mini 1.00 1.00 1.00 27 Tomato Yellow 1.00 1.00 1.00 15
Pitahaya Red 1.00 1.00 1.00 25 Walnut 1.00 1.00 1.00 37

Accuracy 1.00 3024
Macro average 1.00 1.00 1.00 3024

Weighted average 1.00 1.00 1.00 3024
Prec: precision; F1-s: F1-score.
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and hence it causes overfitting. For further deep knowledge
of deep learning models for fruit classification, we recom-
mend the use of datasets that are very hard to classify.

10. Conclusion

In this study, we studied and analyzed various deep learning
methods proposed by numerous researchers in the domain
of fruit detection and classification. While studying different
automated approaches for fruit detection and classification,
we noticed that previous review papers focused on the
application of computer vision techniques in the area.
However, deep learning models were not given much at-
tention despite their state-of-the-art performances on many
image classification problems. To fill this gap, we conducted
an up-to-date review of the recently published literature in
the domain of fruit detection and classification that utilized
deep learning models. Additionally, a detailed study was
presented considering feature description, detection, and
classification algorithms as well as different datasets for fruit
detection and classification. Moreover, after critical analysis
of the reviewed methods, open challenges in terms of
datasets, feature representation, and classification algo-
rithms were identified to overcome. Furthermore, to provide
elaboration on the use of DL models in the field of agri-
culture, we also carried out experiments on CNN models.
We hope that this survey will provide the basic concepts and
applications of DL models in the domain of fruit detection
and classification and will help the beginners working in this
area.
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